
Developing Decision Trees for Handling
Uncertain Data

P. Satya Prakash, P. Jhansi Lakshmi, B.L Krishna

Department of Computer Science, Vignan University, Vadlamudi (A.P)INDIA

Abstract— Classification is one of the most efficient and widely
used data mining technique. In classification, Decision trees can
handle high dimensional data, and their representation is
intuitive and generally easy to assimilate by humans. Decision
trees handle the data whose values are certain. We extend such
classifiers i.e, decision trees to handle uncertain information.
Value uncertainty arises in many applications during the data
collection process. Example sources of uncertainty include data
staleness, and multiple repeated measurements. With
uncertainty, the value of a data item is often represented not by
one single value, but by multiple values forming a probability
distribution (pdf’s). Rather than abstracting uncertain data by
statistical derivatives (such as mean and median), we extend
classical decision tree building algorithms to handle data tuples
with uncertain values. Extensive experiments have been
conducted that show that the resulting classifiers are more
accurate than those using value averages.

Index Terms—Uncertain Data, Decision Tree, Classification, Data
Mining

I. INTRODUCTION

In this modern world, huge amount of information is kept in
the databases. Thus data-mining can be very effective for
extracting knowledge from huge amount of data.
Classification has many applications in real world, such as
stock planning of large superstores, medical diagnosis, etc.
Classification is separation or ordering of objects into classes.
There are various classification techniques i.e. Decision tree,
K-nearest neighbour, Naïve bayes classifier, neural network.
In this paper we discuss decision tree. Classification is a
classical problem in machine learning and data mining[1]. It
summarizes an approach for synthesizing decision trees that
has been used in a variety of systems, and it describes one
such system, ID3, in detail. Decision trees are mainly used
for handling “Decision-making”. Many algorithms, such as
ID3 [2] and C4.5 [3], have been devised for decision tree
construction. C4.5 is an extension to ID3 algorithm.
In traditional decision-tree classification, a feature (an
attribute) of a tuple is either categorical or numerical. For the
latter, a precise and definite point value is usually assumed.
In many applications, however, data uncertainty is common.
The value of a feature/attribute is thus best captured not by a
single point value, but by a range of values giving rise to a
probability distribution. A simple way to handle data
uncertainty is to abstract probability distributions by
summary statistics such as means and variances. We call this
approach “Averaging”. Another approach is to consider the

complete information carried by the probability distributions
to build a decision tree. We call this approach “Distribution-
based”. Our goals are (1) to devise an algorithm for building
decision trees from uncertain data using the Distribution-
based approach; (2) to investigate whether the Distribution-
based approach could lead to a higher classification accuracy
compared with the Averaging approach; and (3) to establish a
theoretical foundation on which pruning techniques are
derived that can significantly improve the computational
efficiency of the Distribution-based algorithms.

II. RELATED WORK
Decision trees are one of the most important aspect for
“Decision-making”. Classification is one of the most
widespread datamining problems found in real life. Decision
tree classification is one of the best-known solution
approaches. ID3, first proposed by Quinlan is a particularly
elegant and instinctive solution [4]. This article presents an
algorithm for privately building an ID3 decision tree. While
this has been done for horizontally partitioned data [5],
Lindell et al has proposed a secure algorithm to build a
decision tree using ID3. Data uncertainty has been broadly
classified as existential uncertainty and value uncertainty.
There has been a growing interest in uncertain data mining.
In [6], the well-known k-means clustering algorithm is
extended to the UK-means algorithm [7][8] for clustering
uncertain data. Data uncertainty is usually captured by pdf’s,
which are generally represented by sets of sample values.
Mining uncertain data is therefore computationally costly due
to information explosion (sets of samples vs. single values).
To improve the performance of UK-means, pruning
techniques have been proposed. Examples include min-max
dist pruning [9] and CK-means [10]. In C4.5 and probabilistic
decision trees[1], missing values in training data are handled
by using fractional tuples. During testing, each missing value
is replaced by multiple values with probabilities based on the
training tuples, thus allowing probabilistic classification
results. In this work, we adopt the technique of fractional
tuple for splitting tuples into subsets when the domain of its
pdf spans across the split point. To improve efficiency, many
techniques have been proposed to reduce the number of
candidate split points [11][12][13]. We use density-based
clustering (e.g., FDBSCAN [14]), frequent item set mining
[15], and density-based classification[16].

P. Satya Prakash et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4480 - 4485

4480

III. APPROACHES
There are two approaches for handling uncertain data. The
first approach, called “Averaging,” transforms an uncertain
data set into a point-valued one by replacing each pdf with its
mean value. More specifically, the mean value v୧,୨ ൌ

׬ x f୧,୨ሺxሻdx
ୠ౟,ౠ

ୟ౟,ౠ
 as its representative value. The feature vector

of ti is thus transformed to (v୧,ଵ,………..,v୧,୩) A decision tree can
then be built by applying a traditional tree construction
algorithm.
Several identical algorithms have been introduced for
decision tree construction. This work provides the ID3
classification algorithm. Very simply, ID3 builds a decision
tree from a fixed set of examples. The resulting tree is used to
classify future samples. C4.5 is an algorithm used to generate
a decision tree developed by Ross Quinlan. C4.5 is an
extension of Quinlan's earlier ID3 algorithm. The decision
trees generated by C4.5 can be used for classification, and for
this reason, C4.5 is often referred to as a statistical classifier.
We present details of the tree construction algorithms under
the two approaches in the following sections.

To exploit the full information carried by the pdfs, our second
approach, called “Distribution-based,” considers all the
sample points that constitute each pdf. The challenge here is
that a training tuple can now “pass” a test at a tree node
probabilistically when its pdf properly contains the split point
of the test.
1. Averaging
A straightforward way to deal with the uncertain information
is to replace each pdf with its expected value, thus,
effectively converting the data tuples into point-valued tuples.
This reduces the problem back to that for point valued data,
and hence, traditional decision tree algorithms such as ID3
and C4.5 [3] can be reused. We call this approach Averaging
(AVG).
AVG is a greedy algorithm that builds a tree top-down. When
processing a node, we examine a set of tuples S. The
algorithm starts with the root node and with S being the set of
all training tuples. At each node n, we first check if all the
tuples in S have the same class label c. If so, we make n a leaf
node and set ௡ܲሺܿሻ ൌ 1, ௡ܲሺܥଵሻ ൌ ଵܿ׊0 ് Otherwise, we .ܥ
select an attribute A୨୬ and a split point z୬ and divide the
tuples into two subsets: “left” and “right.” All tuples with
v୧,୨౤

൑ z୬ are put in the “left” subset L; the rest goes to the
“right” subset R. If either L or R is empty (even after
exhausting all possible choices of A୨౤ and z୬), it is impossible
to use the available attributes to further discern the tuples in
S. In that case, we make n a leaf node. Moreover, the
population of the tuples in S for each class label induces the
probability distribution ௡ܲ. In particular, for each class label
cאC, we assign to Pn(c) the fraction of tuples in S that is
labeled c. If neither L nor R is empty, we make n an internal
node and create child nodes for it. We recursively invoke the
algorithm on the “left” child and the “right” child, passing to
them the sets L and R, respectively. To build a good decision
tree, the choice of A୨౤

 and z୬ is crucial. At this point, we may
assume that this selection is performed by a black box
algorithm BestSplit, which takes a set of tuples as parameter,
and returns the best choice of attribute and split point for
those tuples.

Let us illustrate this classification algorithm using the
example tuples shown in Table 1. This set consists of six
tuples of two class labels “A” and “B.” Each tuple has only

P. Satya Prakash et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4480 - 4485

4481

one attribute, whose (discrete) probability distribution is
shown under the column “probability distribution.” For
instance, tuple 3 has class label “A” and its attribute takes the
values of -1, +1, +10 with probabilities 5/8, 1/8, 2/8,
respectively. The column “mean” shows the expected value
of the attribute. For example, tuple 3 has an expected value of
+2.0. With Averaging, there is only one way to partition the
set: the even-numbered tuples go to L and the odd-numbered
tuples go to R. The tuples in each subset have the same mean
attribute value, and hence, cannot be discerned further. The
resulting decision tree is shown in Fig. 2a. Since the left
subset has 2 tuples of class B and 1 tuple of class A, the left
leaf node L has the probability distribution ௅ܲ(A) =1/3 and

௅ܲ(B) =2/3 over the class labels. The probability distribution
of class labels in the right leaf node R is determined
analogously. Now, if we use the six tuples in Table 1 as test
tuples4 and use this decision tree to classify them, we would
classify tuples 2,4,6 as class “B” (the most likely class label
in L), and hence, misclassify tuple 2. We would classify
tuples 1, 3, 5 as class “A,” thus getting the class label of 5
wrong. The accuracy is 2=3.

Fig. 3. Example decision tree before post pruning.

Typically, BestSplit is designed to select the attribute and
split point that minimize the degree of dispersion. The degree
of dispersion can be measured in many ways, such as
entropy. We assume that entropy is used as the measure since
it is predominantly used for building decision trees. For each
of the (m-1)k combinations of attributes (A୨ሻand split points
(z), we divide the set S into the “left” and “right” subsets L
and R. We then compute the entropy for each such
combination:

H(z,A୨)=∑ |X|

|S|XୀL,R ሺ∑ െPC/XlogଶPC/XୡאC

where PC=X is the fraction of tuples in X that is labeled c.

2. Distribution-Based Approach
For uncertain data, we adopt the same decision tree building
framework as described above for handling point data. After
an attribute A୨୬ and a split point z୬have been chosen for a
node n, we have to split the set of tuples S into two subsets L
and R. The major difference from the point data case lies in
the way the set S is split. Recall that the pdf of a tuple t୧ Sא
under attribute A୨୬spans the interval [a୧,୨୬,b୧,୨୬]. If b୧,୨୬ ൑ z୬,

the pdf of ti lies completely on the left of the split point, and
thus, ݐ௜ is assigned to L. Similarly, we assign t୧ to R ifz୬ ൏
a୧,୨୬. If the pdf properly contains the split point, i.e., a୧,୨୬ ൑
z୬ ൏ b୧,୨୬, we split ti into two fractional tuples ݐ௅ and and add
them to L and R, respectively. We call this algorithm
Uncertain Decision Tree (UDT). Let us reexamine the
example tuples in Table 1 to see how the distribution-based
algorithm can improve classification accuracy. By taking into
account the probability distribution, UDT builds the tree
shown in Fig. 3 before pre pruning and post pruning are
applied. This tree is much more elaborate than the tree shown
in Fig. 2a because we are using more information, and hence,
there are more choices of split points. The tree in Fig. 3 turns
out to have a 100 percent classification accuracy. After post
pruning, we get the tree in Fig. 2b. Now, let us use the six
tuples in Table 1 as testing tuples to test the tree in Fig. 2b.
For instance, the classification result of tuple 3 gives
P(A)=5/8*0:80 + 3/8 *0:212= 0:5795 and P(B) =5/8*0:20
+3/8 * 0:788 =0:4205. Since the probability for “A” is higher,
we conclude that tuple 3 belongs to class “A.” All the other
tuples are handled similarly, using the label of the highest
probability as the final classification result. It turns out that
all six tuples are classified correctly. This handcrafted
example thus illustrates that by considering probability
distributions rather than just expected values, we can
potentially build a more accurate decision tree.

TABLE 2 Selected Data Sets from the UCI Machine

Learning Repository

IV. ID3 ALGORITHM

The ID3 algorithm is used to build a decision tree, given a set
of non-categorical attributes C1, C2, .., Cn, the categorical
attribute C, and a training set T of records.

1) function ID3 (R: a set of non-categorical attributes,
 C: the categorical attribute,

 S: a training set) returns a decision tree;
 begin
 2)If S is empty, return a single node with value Failure;
 3)If S consists of records all with the same value for the
categorical attribute, return a single node with that value;

P. Satya Prakash et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4480 - 4485

4482

4)If R is empty, then return a single node with as value
5) the most frequent of the values of the categorical attribute
that are found in records of S; [note that then there will be
errors, that is, records that will be improperly classified];
6) Let D be the attribute with largest Gain(D,S) among
attributes in R;
 a)Let {d୨| j=1,2, .., m} be the values of attribute D;
 b)Let {s୨ | j=1,2, .., m} be the subsets of S consisting
 c)respectively of records with value d୨for attribute D;
 Return a tree with root labeled D and arcs labeled
 d1, d2, .., dm going respectively to the trees
 ID3(R-{D}, C, S1), ID3(R-{D}, C, S2), .., ID3(R-

{D}, C, Sm);
 end ID3;

V. EXPERIMENTS ON ACCURACY

In order to achieve a higher classification accuracy by
considering data uncertainty, we should implement AVG and
UDT and apply them to 10 real data sets (see Table 2) taken
from the UCI Machine Learning Repository [17]. These data
sets are chosen because they mostly contain numerical
attributes obtained from the measurements.
Here, first data set contains 640 tuples, each representing an
utterance of the Japanese vowels by one of the nine
participating speakers. Each tuple contains 12 numerical
attributes, which are Linear Predictive Coding (LPC)
coefficients. These coefficients reflect important features of
speech sound. Each attribute value consists of 7-29 samples
of LPC coefficients collected over time. These samples
represent uncertain information and are used to model the pdf
of the attribute for the tuple.
The other nine data sets contain “point values” without
uncertainty.

TABLE 3Accuracy Improvement by Considering the

Distribution

We enhance uncertainty information by fitting appropriate
error models on to the point data. For each tuple t୧ and for
each attribute Aj, the point value v୧,୨ reported in a data set is
used as the mean of a pdf f୧,୨, defined over an interval [ai,j;
bi,j]. The range of values for A୨ (over the whole data set) is
noted and the width of [a୧,୨, b୧,୨] is set to w. |A୨|, where |A୨|
denotes the width of the range for A୨ and w is a controlled
parameter. The results of applying AVG and UDT to the 10

data sets are shown in Table 3. Using C4.5 [3] the
information gain is calculated. In the experiments, each pdf is
represented by 100 sample points (i.e., s=100), except for the
“JapaneseVowel” data set. We have repeated the experiments
using various values for w. For most of the data sets,
Gaussian distribution is assumed as the error model. Since the
data sets “PenDigits,” “Vehicle,” and “Satellite” have integer
domains, we suspected that they are highly influenced by
quantization noise. So, we have also tried uniform
distribution on these three data sets, in addition to Gaussian.6
For the “JapaneseVowel” data set, we use the uncertainty
given by the raw data (7-29 samples) to model the pdf.

 VI. EFFECT OF NOISE MODEL

In the experiment above, we have taken data from the UCI
repository and directly added uncertainty to it so as to test our
UDT algorithm. The amount of errors in the data is
uncontrolled. So, in the next experiment, we inject some
artificial noise into the data in a controlled way except the
“JapaneseVowel”. For each tuple t୧ and for each attributeA୨,
the point value v୧,୨ is perturbed by adding a Gaussian noise
with zero mean and a standard deviation equal to ~=1/4(u.
|A|), where u is a controllable parameter. So, the perturbed
value is v୧,୨= v୧,୨+∆୧,୨, where ∆୧,୨ is a random number which
follows N(0,σଶ).

Fig. 4. Experiment with controlled noise on data set

“Segment.”

Each curve in the figure corresponds to one value of u, which
controls the amount of perturbation that has been artificially
added to the UCI data set. The x-axis corresponds to different
values of w—the error model that we use as the uncertainty
information. The y-axis gives the accuracy of the decision
tree built by UDT.

VII. PRUNING ALGORITHMS
Pruning Empty and Homogeneous Intervals:
Definition 1: For a given set of tuples S, an optimal split
point for an attribute A୨ is one that minimizes H(z,A୨). (Note
that the minimization is taken over all z €[q1, qv].).The end
points define v _ 1 disjoint intervals: (qi, qi+1] for i =1; . . . ;

P. Satya Prakash et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4480 - 4485

4483

v -1. We will examine each interval separately. For
convenience, an interval is denoted by (a,b].
Definition 2 (Empty interval): An interval (a,b] is empty if

׬ f୦,୨ሺxሻdx ൌ 0
ୠ

ୟ for all t୦ .Sא
Definition 3 (Homogeneous interval): An interval (a, b] is
homogeneous if there exists a class label c א C such that

׬ f୦,୨ሺxሻdx ് 0 ՜ c୦ ൌ c
ୠ

ୟ for all t୦ א S.

Definition 4 (Heterogeneous interval): An interval (a,b] is
heterogeneous if it is neither empty nor homogeneous.
Theorem 1: If an optimal split point falls in an empty
interval, then an end point of the interval is also an optimal
split point.
Proof: By the definition of information gain, if the optimal
split point can be found in the interior of an empty interval
(a,b], then that split point can be replaced by the end point a
without changing the resulting entropy. As a result of this
theorem, if (a,b] is empty, we only need to examine the end
point a when looking for an optimal split point. There is a
well-known analogue for the point data case, which states
that if an optimal split point is to be placed between two
consecutive attribute values, it can be placed anywhere in the
interior of the interval and the entropy will be the same [28].
Therefore, when searching for the optimal split point, there is
no need to examine the interior of empty intervals. The
following theorem further reduces the search space:
Theorem 2: If an optimal split point falls in a homogeneous
interval, then an end point of the interval is also an optimal
split point.

Definition 5 (Tuple density): Given a class c א C, an
attribute A୨, and a set of tuples S, we define the tuple density
function gୡ,୨ as

gୡ,୨ ൌ ෍ w୦f୦,୨

୲౞אS:ୡ౞ୀୡ

where w୦ is weight of the fractional tuple ݐ௛ S א

Definition 6 (Tuple count): For an attributeA୨, the tuple
count for class c א C in an interval (a, b] is

γୡ,୨
ሺa, bሻ ൌ න gୡ,୨

ୠ

ୟ
ሺxሻdx

Theorem 3: Suppose that the tuple count for each class
increases linearly in a heterogeneous interval (a, b] (i.e.,
אୡ׊ C, t׊ א ሾ0,1ሿ, γୡ,୨

ሺa, ሺ1 െ tሻa ൅ tbሻ ൌ βୡt for some

constant βୡ). If an optimal split point falls in ða; b_, then an
end point of the interval is also an optimal split point.

VIII. END POINT SAMPLING
UDT-GP Global Pruning algorithm is very effective in
pruning intervals. In some settings, UDT-GP reduces the
number of “entropy calculations” (including the calculation
of entropy values of the split points and the calculation of
entropy-like lower bounds for intervals) to only 2.7 percent of
that of UDT.

Fig. 5. Illustration of end point sampling.

In fig, Row 1 shows the intervals obtained from the domains
of the pdfs. The collection of end points of these intervals
constitutes the set Q୨(row 2). From these end points, disjoint
intervals are derived (row 3). Instead of using the set of all
end points Q୨(row 2), we take a sample Q୨ଵ(row 4) of these
points. The algorithm thus operates on the intervals derived
from Q୨ଵ(row 5) instead of those derived from Q୨(row 3).
After all the pruning’s on the coarser intervals are done, we
are left with a set Y 0 of candidate intervals (row 6). (Note
that a couple of end points are pruned in the second interval
of row 5.) For each unpruned candidate interval q୷, q୷ାଵ in
row 6, we bring back the original set of end points inside the
interval (row 7) and their original finer intervals (row 8). The
candidate set of intervals obtained after pruning is Yଵଵ (row
9), which is a much smaller candidate than the set of
candidate intervals when no end point sampling is used.
We incorporate these end point Sampling strategies into
UDT-GP. The resulting algorithm is called UDT-ES.

 Fig. 5.Effects of s on UDT-ES.

IX. CONCLUSION
In this work, we have seen the uncertain data is handled
through “Averaging” by using means and variances. But in
“Distribution-based” the accuracy of a uncertain data is
detected through decision trees. Decision trees calculate the
entropy measure and enhances the information gain for better

P. Satya Prakash et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4480 - 4485

4484

accuracy. Several procedures and algorithm handles data
uncertainty. We exploit data uncertainty that leads to decision
trees with remarkably higher accuracies.

ACKNOWLEDGMENT:

This research is supported by the Vignan University, Andhra
Pradesh, India, Asst prof. Mrs P.Jhansi Lakshmi, HOD Mr.
K.V. Krishna Kishore.

REFERENCES:

[1] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1,
no. 1, pp. 81–106, 1986.J. R. Quinlan, “Learning logical definitions
from relations,” Machine Learning, vol. 5, pp. 239–266, 1990.

[2] J. Kinoshita, “Fuzzy decision trees by fuzzy ID3 algorithm and its
application to diagnosis systems,” in Fuzzy Systems, 1994, vol. 3.
IEEE World Congress on Computational Intelligence, 26-29 Jun. 1994,
pp.2113–2118.

[3] C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993,ISBN 1-55860-238-0.

[4] J.R. Quinlan, “Induction of decision trees,” In Jude W.Shavlik, Thomas
G. Dietterich, (Eds.), Readings in Machine Learning. Morgan
Kaufmann, 1990. Originally published in Machine Learning, vol. 1,
1986, pp 81–106.

[5] Y. Lindell, B. Pinkas, “Privacy preserving data mining,” In Journal of
Cryptology vol. 15, no. 3, 2002, pp 177–206.

[6] M. Chau, R. Cheng, B. Kao, and J. Ng, “Uncertain data mining: An
example in clustering location data,” in PAKDD, ser. Lecture Notes in
Computer Science, vol. 3918. Singapore: Springer, 9–12 Apr. 2006, pp.
199–204

[7]J. Chen and R. Cheng, “Efficient Evaluation of Imprecise Location-
Dependent Queries,” Proc. Int’l Conf. Data Eng. (ICDE), pp. 586- 595,
Apr. 2007.

[8] M. Chau, R. Cheng, B. Kao, and J. Ng, “Uncertain Data Mining: An
Example in Clustering Location Data,” Proc. Pacific-Asia Conf.
Knowledge Discovery and Data Mining (PAKDD), pp. 199-204, Apr.
2006.

[9] W. K. Ngai, B. Kao, C. K. Chui, R. Cheng, M. Chau, and K. Y. Yip,
“Efficient clustering of uncertain data,” in ICDM. Hong Kong, China:
IEEE Computer Society, 18–22 Dec. 2006, pp. 436–445.

[10] S. D. Lee, B. Kao, and R. Cheng, “Reducing UK-means to K-means,” in
The 1st Workshop on Data Mining of Uncertain Data (DUNE), in
conjunction with the 7th IEEE International Conference on Data
Mining (ICDM), Omaha, NE, USA, 28 Oct. 2007.

[11] T. Elomaa and J. Rousu, “General and Efficient Multisplitting of
Numerical Attributes,” Machine Learning, vol. 36, no. 3, pp. 201- 244,
1999.

[12] U.M. Fayyad and K.B. Irani, “On the Handling of Continuous- Valued
Attributes in Decision Tree Generation,” Machine Learning, vol. 8, pp.
87-102, 1992.

[13] T. Elomaa and J. Rousu, “Efficient Multi-splitting Revisited: Optima-
Preserving Elimination of Partition Candidates,” DataMining and
Knowledge Discovery, vol. 8, no. 2, pp. 97 126, 2004.

 [14]H.-P. Kriegel and M. Pfeifle, “Density-Based Clustering of Uncertain
Data,” Proc. Int’l Conf. Knowledge Discovery and Data Mining
(KDD), pp. 672-677, Aug. 2005.

[15] C.K. Chui, B. Kao, and E. Hung, “Mining Frequent Itemsets from
Uncertain Data,” Proc. Pacific-Asia Conf. Knowledge Discovery and
Data Mining (PAKDD), pp. 47-58, May 2007.

[16] C.C. Aggarwal, “On Density Based Transforms for Uncertain Data
Mining,” Proc. Int’l Conf. Data Eng. (ICDE), pp. 866-875, Apr. 2007.

[17] A. Asuncion and D. Newman, UCI Machine Learning
Repository,http://www.ics.uci.edu/mlearn/MLRepository.html, 2007.

P. Satya Prakash et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4480 - 4485

4485

