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Abstract— Classification is one of the most efficient and widely 
used data mining technique. In classification, Decision trees can 
handle high dimensional data, and their representation is 
intuitive and generally easy to assimilate by humans. Decision 
trees handle the data whose values are certain. We extend such 
classifiers i.e, decision trees to handle uncertain information. 
Value uncertainty arises in many applications during the data 
collection process. Example sources of uncertainty include data 
staleness, and multiple repeated measurements. With 
uncertainty, the value of a data item is often represented not by 
one single value, but by multiple values forming a probability 
distribution (pdf’s). Rather than abstracting uncertain data by 
statistical derivatives (such as mean and median), we extend 
classical decision tree building algorithms to handle data tuples 
with uncertain values. Extensive experiments have been 
conducted that show that the resulting classifiers are more 
accurate than those using value averages.  
 
Index Terms—Uncertain Data, Decision Tree, Classification, Data 
Mining 

 
I. INTRODUCTION 

In this modern world, huge amount of information  is kept in 
the databases. Thus data-mining can be very effective for 
extracting knowledge from huge amount of data. 
Classification has many applications in real world, such as 
stock planning of large superstores, medical diagnosis, etc. 
Classification is separation or ordering of objects into classes. 
There are various classification techniques i.e. Decision tree, 
K-nearest neighbour, Naïve bayes classifier, neural network. 
In this paper we discuss decision tree. Classification is a 
classical problem in machine learning and data mining[1]. It 
summarizes an approach for synthesizing decision trees that 
has been used in a variety of systems, and it describes one 
such system, ID3, in detail. Decision trees are mainly used 
for handling “Decision-making”. Many algorithms, such as 
ID3 [2] and C4.5 [3], have been devised for decision tree 
construction. C4.5 is an extension to ID3 algorithm. 
In traditional decision-tree classification, a feature (an 
attribute) of a tuple is either categorical or  numerical. For the 
latter, a precise and definite point value is usually assumed. 
In many applications, however, data uncertainty is common. 
The value of a feature/attribute is thus best captured not by a 
single point value, but by a range of values giving rise to a 
probability distribution. A simple way to handle data 
uncertainty is to abstract probability distributions by 
summary statistics such as means and variances. We call this 
approach “Averaging”. Another approach is to consider the 

complete information carried by the probability distributions 
to build a decision tree. We call this approach “Distribution-
based”.  Our goals are (1) to devise an algorithm for building 
decision trees from uncertain data using the Distribution-
based approach; (2) to investigate whether the Distribution-
based approach could lead to a higher classification accuracy 
compared with the Averaging approach; and (3) to establish a 
theoretical foundation on which pruning techniques are 
derived that can significantly improve the computational 
efficiency of the Distribution-based algorithms. 
 

II. RELATED WORK 
Decision trees are one of the most important aspect for 
“Decision-making”. Classification is one of the most 
widespread datamining problems found in real life. Decision 
tree classification is one of the best-known solution 
approaches. ID3, first proposed by Quinlan is a particularly 
elegant and instinctive solution [4]. This article presents an 
algorithm for privately building an ID3 decision tree. While 
this has been done for horizontally partitioned data [5], 
Lindell et al has proposed a secure algorithm to build a 
decision tree using ID3. Data uncertainty has been broadly 
classified as existential uncertainty and value uncertainty. 
There has been a growing interest in uncertain data mining. 
In [6], the well-known k-means clustering algorithm is 
extended to the UK-means algorithm [7][8] for clustering 
uncertain data. Data uncertainty is usually captured by pdf’s, 
which are generally represented by sets of sample values. 
Mining uncertain data is therefore computationally costly due 
to information explosion (sets of samples vs. single values). 
To improve the performance of UK-means, pruning 
techniques have been proposed. Examples include min-max 
dist pruning [9] and CK-means [10]. In C4.5 and probabilistic 
decision trees[1], missing values in training data are handled 
by using fractional tuples. During testing, each missing value 
is replaced by multiple values with probabilities based on the 
training tuples, thus allowing probabilistic classification 
results. In this work, we adopt the technique of fractional 
tuple for splitting tuples into subsets when the domain of its 
pdf spans across the split point. To improve efficiency, many 
techniques have been proposed to reduce the number of 
candidate split points [11][12][13]. We use density-based 
clustering (e.g., FDBSCAN [14]), frequent item set mining 
[15], and density-based classification[16]. 
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III. APPROACHES 
There are two approaches for handling uncertain data. The 
first approach, called “Averaging,” transforms an uncertain 
data set into a point-valued one by replacing each pdf with its 
mean value. More specifically, the mean value v୧,୨ ൌ

׬ x f୧,୨ሺxሻdx
ୠ౟,ౠ

ୟ౟,ౠ
 as its representative value. The feature vector 

of ti is thus transformed to (v୧,ଵ,………..,v୧,୩) A decision tree can 
then be built by applying a traditional tree construction 
algorithm. 
Several identical algorithms have been introduced for 
decision tree construction. This work provides the ID3 
classification algorithm. Very simply, ID3 builds a decision 
tree from a fixed set of examples. The resulting tree is used to 
classify future samples. C4.5 is an algorithm used to generate 
a decision tree developed by Ross Quinlan. C4.5 is an 
extension of Quinlan's earlier ID3 algorithm. The decision 
trees generated by C4.5 can be used for classification, and for 
this reason, C4.5 is often referred to as a statistical classifier. 
We present details of the tree construction algorithms under 
the two approaches in the following sections. 

 

To exploit the full information carried by the pdfs, our second 
approach, called “Distribution-based,” considers all the 
sample points that constitute each pdf. The challenge here is 
that a training tuple can now “pass” a test at a tree node 
probabilistically when its pdf properly contains the split point 
of the test. 
1. Averaging 
A straightforward way to deal with the uncertain information 
is to replace each pdf with its expected value, thus, 
effectively converting the data tuples into point-valued tuples. 
This reduces the problem back to that for point valued data, 
and hence, traditional decision tree algorithms such as ID3 
and C4.5 [3] can be reused. We call this approach Averaging 
(AVG). 
AVG is a greedy algorithm that builds a tree top-down. When 
processing a node, we examine a set of tuples S. The 
algorithm starts with the root node and with S being the set of 
all training tuples. At each node n, we first check if all the 
tuples in S have the same class label c. If so, we make n a leaf 
node and set ௡ܲሺܿሻ ൌ 1, ௡ܲሺܥଵሻ ൌ ଵܿ׊0 ്  Otherwise, we .ܥ
select an attribute A୨୬ and a split point z୬ and divide the 
tuples into two subsets: “left” and “right.” All tuples with 
v୧,୨౤

൑ z୬ are put in the “left” subset L; the rest goes to the 
“right” subset R. If either L or R is empty (even after 
exhausting all possible choices of A୨౤ and z୬), it is impossible 
to use the available attributes to further discern the tuples in 
S. In that case, we make n a leaf node. Moreover, the 
population of the tuples in S for each class label induces the 
probability distribution ௡ܲ. In particular, for each class label 
cאC, we assign to Pn(c) the fraction of tuples in S that is 
labeled c. If neither L nor R is empty, we make n an internal 
node and create child nodes for it. We recursively invoke the 
algorithm on the “left” child and the “right” child, passing to 
them the sets L and R, respectively. To build a good decision 
tree, the choice of A୨౤

 and z୬ is crucial. At this point, we may 
assume that this selection is performed by a black box 
algorithm BestSplit, which takes a set of tuples as parameter, 
and returns the best choice of attribute and split point for 
those tuples. 
 

 
 
Let us illustrate this classification algorithm using the 
example tuples shown in Table 1. This set consists of six 
tuples of two class labels “A” and “B.” Each tuple has only 
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one attribute, whose (discrete) probability distribution is 
shown under the column “probability distribution.” For 
instance, tuple 3 has class label “A” and its attribute takes the 
values of -1, +1, +10 with probabilities 5/8, 1/8, 2/8, 
respectively. The column “mean” shows the expected value 
of the attribute. For example, tuple 3 has an expected value of 
+2.0. With Averaging, there is only one way to partition the 
set: the even-numbered tuples go to L and the odd-numbered 
tuples go to R. The tuples in each subset have the same mean 
attribute value, and hence, cannot be discerned further. The 
resulting decision tree is shown in Fig. 2a. Since the left 
subset has 2 tuples of class B and 1 tuple of class A, the left 
leaf node L has the probability distribution ௅ܲ(A) =1/3 and 

௅ܲ(B) =2/3 over the class labels. The probability distribution 
of class labels in the right leaf node R is determined 
analogously. Now, if we use the six tuples in Table 1 as test 
tuples4 and use this decision tree to classify them, we would 
classify tuples 2,4,6 as class “B” (the most likely class label 
in L), and hence, misclassify tuple 2. We would classify 
tuples 1, 3, 5 as class “A,” thus getting the class label of 5 
wrong. The accuracy is 2=3. 
 

 
Fig. 3. Example decision tree before post pruning. 

 
Typically, BestSplit is designed to select the attribute and 
split point that minimize the degree of dispersion. The degree 
of dispersion can be measured in many ways, such as 
entropy. We assume that entropy is used as the measure since 
it is predominantly used for building decision trees. For each 
of the (m-1)k combinations of attributes (A୨ሻand split points 
(z), we divide the set S into the “left” and “right” subsets L 
and R. We then compute the entropy for each such 
combination:  
 

H(z,A୨)=∑ |X|

|S|XୀL,R ሺ∑ െPC/XlogଶPC/XୡאC  

where PC=X is the fraction of tuples in X that is labeled c.  
 
2. Distribution-Based Approach 
For uncertain data, we adopt the same decision tree building 
framework as described above for handling point data. After 
an attribute A୨୬ and a split point z୬have been chosen for a 
node n, we have to split the set of tuples S into two subsets L 
and R. The major difference from the point data case lies in 
the way the set S is split. Recall that the pdf of a tuple t୧  Sא
under attribute A୨୬spans the interval [a୧,୨୬,b୧,୨୬]. If b୧,୨୬ ൑ z୬, 

the pdf of ti lies completely on the left of the split point, and 
thus, ݐ௜ is assigned to L. Similarly, we assign t୧ to R ifz୬ ൏
a୧,୨୬. If the pdf properly contains the split point, i.e., a୧,୨୬ ൑
z୬ ൏ b୧,୨୬, we split ti into two fractional tuples ݐ௅ and and add 
them to L and R, respectively. We call this algorithm 
Uncertain Decision Tree (UDT). Let us reexamine the 
example tuples in Table 1 to see how the distribution-based 
algorithm can improve classification accuracy. By taking into 
account the probability distribution, UDT builds the tree 
shown in Fig. 3 before pre pruning and post pruning are 
applied. This tree is much more elaborate than the tree shown 
in Fig. 2a because we are using more information, and hence, 
there are more choices of split points. The tree in Fig. 3 turns 
out to have a 100 percent classification accuracy. After post 
pruning, we get the tree in Fig. 2b. Now, let us use the six 
tuples in Table 1 as testing tuples to test the tree in Fig. 2b. 
For instance, the classification result of tuple 3 gives 
P(A)=5/8*0:80 + 3/8 *0:212= 0:5795 and P(B) =5/8*0:20 
+3/8 * 0:788 =0:4205. Since the probability for “A” is higher, 
we conclude that tuple 3 belongs to class “A.” All the other 
tuples are handled similarly, using the label of the highest 
probability as the final classification result. It turns out that 
all six tuples are classified correctly. This handcrafted 
example thus illustrates that by considering probability 
distributions rather than just expected values, we can 
potentially build a more accurate decision tree. 
 

 
TABLE 2 Selected Data Sets from the UCI Machine            

Learning Repository 
 

IV. ID3 ALGORITHM 

The ID3 algorithm is used to build a decision tree, given a set 
of non-categorical attributes C1, C2, .., Cn, the categorical 
attribute C, and a training set T of records. 

1) function ID3 (R: a set of non-categorical  attributes, 
        C: the categorical attribute, 

          S: a training set) returns a decision tree; 
   begin 
 2)If S is empty, return a single node with value    Failure; 
 3)If S consists of records all with the same value for  the 
categorical attribute, return a single node with that value; 
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4)If R is empty, then return a single node with as value   
5)  the most frequent of the values of the categorical attribute 
that are found in records of S; [note that then there will be 
errors, that is, records that will be improperly classified]; 
6) Let D be the attribute with largest Gain(D,S)    among 
attributes in R; 
 a)Let {d୨| j=1,2, .., m} be the values of attribute D; 
 b)Let {s୨ | j=1,2, .., m} be the subsets of S consisting  
   c)respectively of records with value d୨for attribute D; 
 Return a tree with root labeled D and arcs labeled  
    d1, d2, .., dm going respectively to the trees  
      ID3(R-{D}, C, S1), ID3(R-{D}, C, S2), .., ID3(R-

{D}, C, Sm); 
   end ID3; 

 
V. EXPERIMENTS ON ACCURACY 

In order to achieve  a higher classification accuracy by 
considering data uncertainty, we should implement AVG and 
UDT and apply them to 10 real data sets (see Table 2) taken 
from the UCI Machine Learning Repository [17]. These data 
sets are chosen because they  mostly contain numerical 
attributes obtained from the measurements. 
Here, first data set contains 640 tuples, each representing an 
utterance of the Japanese vowels by one of the nine 
participating speakers. Each tuple contains 12 numerical 
attributes, which are Linear Predictive Coding (LPC) 
coefficients. These coefficients reflect important features of 
speech sound. Each attribute value consists of 7-29 samples 
of LPC coefficients collected over time. These samples 
represent uncertain information and are used to model the pdf 
of the attribute for the tuple. 
The other nine data sets contain “point values” without 
uncertainty. 

 
TABLE 3Accuracy Improvement by Considering the 

Distribution 
 
We enhance uncertainty information by fitting appropriate 
error models on to the point data. For each tuple t୧ and for 
each attribute Aj, the point value v୧,୨ reported in a data set is 
used as the mean of a pdf f୧,୨, defined over an interval [ai,j; 
bi,j]. The range of values for A୨ (over the whole data set) is 
noted and the width of [a୧,୨, b୧,୨] is set to w. |A୨|, where |A୨| 
denotes the width of the range for A୨ and w is a controlled 
parameter. The results of applying AVG and UDT to the 10 

data sets are shown in Table 3. Using C4.5 [3] the 
information gain is calculated. In the experiments, each pdf is 
represented by 100 sample points (i.e., s=100), except for the 
“JapaneseVowel” data set. We have repeated the experiments 
using various values for w. For most of the data sets, 
Gaussian distribution is assumed as the error model. Since the 
data sets “PenDigits,” “Vehicle,” and “Satellite” have integer 
domains, we suspected that they are highly influenced by 
quantization noise. So, we have also tried uniform 
distribution on these three data sets, in addition to Gaussian.6 
For the “JapaneseVowel” data set, we use the uncertainty 
given by the raw data (7-29 samples) to model the pdf. 

 
     VI. EFFECT OF NOISE MODEL 

In the experiment above, we have taken data from the UCI 
repository and directly added uncertainty to it so as to test our 
UDT algorithm. The amount of errors in the data is 
uncontrolled. So, in the next experiment, we inject some 
artificial noise into the data in a controlled way except the 
“JapaneseVowel”. For each tuple t୧ and for each attributeA୨, 
the point value v୧,୨ is perturbed by adding a Gaussian noise 
with zero mean and a standard deviation equal to ~=1/4(u. 
|A|), where u is a controllable parameter. So, the perturbed 
value is v୧,୨= v୧,୨+∆୧,୨, where ∆୧,୨ is a random number which 
follows N(0,σଶ). 

 
Fig. 4. Experiment with controlled noise on data set 

“Segment.” 
 

Each curve in the figure corresponds to one value of u, which 
controls the amount of perturbation that has been artificially 
added to the UCI data set. The x-axis corresponds to different 
values of w—the error model that we use as the uncertainty 
information. The y-axis gives the accuracy of the decision 
tree built by UDT. 
 

VII. PRUNING ALGORITHMS 
Pruning Empty and Homogeneous Intervals: 
Definition 1: For a given set of tuples S, an optimal split 
point for an attribute A୨ is one that minimizes H(z,A୨). (Note 
that the minimization is taken over all z €[q1, qv].).The end 
points define v _ 1 disjoint intervals: (qi, qi+1] for i =1; . . . ; 
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v -1. We will examine each interval separately. For 
convenience, an interval is denoted by (a,b]. 
Definition 2 (Empty interval): An interval (a,b] is empty if 

׬ f୦,୨ሺxሻdx ൌ 0
ୠ

ୟ   for all t୦  .Sא
Definition 3 (Homogeneous interval): An interval (a, b] is 
homogeneous if there exists a class label c א C such that 

׬ f୦,୨ሺxሻdx ് 0 ՜ c୦ ൌ c 
ୠ

ୟ for all t୦ א S. 
 
Definition 4 (Heterogeneous interval): An interval (a,b] is 
heterogeneous if it is neither empty nor homogeneous. 
Theorem 1: If an optimal split point falls in an      empty 
interval, then an end point of the interval is also an optimal 
split point. 
Proof: By the definition of information gain, if the optimal 
split point can be found in the interior of an empty interval 
(a,b], then that split point can be replaced by the end point a 
without changing the resulting entropy. As a result of this 
theorem, if (a,b] is empty, we only need to examine the end 
point a when looking for an optimal split point. There is a 
well-known analogue for the point data case, which states 
that if an optimal split point is to be placed between two 
consecutive attribute values, it can be placed anywhere in the 
interior of the interval and the entropy will be the same [28]. 
Therefore, when searching for the optimal split point, there is 
no need to examine the interior of empty intervals. The 
following theorem further reduces the search space: 
Theorem 2: If an optimal split point falls in a homogeneous 
interval, then an end point of the interval is also an optimal 
split point. 
 
Definition 5 (Tuple density): Given a class c א C, an 
attribute A୨, and a set of tuples S, we define the tuple density 
function gୡ,୨ as 

gୡ,୨ ൌ ෍ w୦f୦,୨

୲౞אS:ୡ౞ୀୡ

 

where w୦ is weight of the fractional tuple ݐ௛  S א
 
Definition 6 (Tuple count): For an attributeA୨, the tuple 
count for class c א C in an interval (a, b] is 

γୡ,୨
ሺa, bሻ ൌ න gୡ,୨

ୠ

ୟ
ሺxሻdx 

Theorem 3: Suppose that the tuple count for each class 
increases linearly in a heterogeneous interval (a, b] (i.e., 
אୡ׊ C, t׊ א ሾ0,1ሿ, γୡ,୨

ሺa, ሺ1 െ tሻa ൅ tbሻ ൌ βୡt for some 

constant βୡ). If an optimal split point falls in ða; b_, then an 
end point of the interval is also an optimal split point. 
 

VIII. END POINT SAMPLING 
UDT-GP Global Pruning algorithm is very effective in 
pruning intervals. In some settings, UDT-GP reduces the 
number of “entropy calculations” (including the calculation 
of entropy values of the split points and the calculation of 
entropy-like lower bounds for intervals) to only 2.7 percent of 
that of UDT. 

 
Fig. 5. Illustration of end point sampling. 

 
In fig, Row 1 shows the intervals obtained from the domains 
of the pdfs. The collection of end points of these intervals 
constitutes the set Q୨(row 2). From these end points, disjoint 
intervals are derived (row 3). Instead of using the set of all 
end points Q୨(row 2), we take a sample Q୨ଵ(row 4) of these 
points. The algorithm thus operates on the intervals derived 
from Q୨ଵ(row 5) instead of those derived from Q୨(row 3). 
After all the pruning’s on the coarser intervals are done, we 
are left with a set Y 0 of candidate intervals (row 6). (Note 
that a couple of end points are pruned in the second interval 
of row 5.) For each unpruned candidate interval q୷, q୷ାଵ in 
row 6, we bring back the original set of end points inside the 
interval (row 7) and their original finer intervals (row 8). The 
candidate set of intervals obtained after pruning is Yଵଵ (row 
9), which is a much smaller candidate than the set of 
candidate intervals when no end point sampling is used. 
We incorporate these end point Sampling strategies into 
UDT-GP. The resulting algorithm is called UDT-ES. 

 
                        Fig. 5.Effects of s on UDT-ES. 
 

IX. CONCLUSION 
In this work, we have seen the uncertain data is handled 
through “Averaging” by using means and variances. But in 
“Distribution-based” the accuracy of a uncertain data is 
detected through decision trees. Decision trees calculate the 
entropy measure and enhances the information gain for better 
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accuracy. Several procedures and algorithm handles data 
uncertainty. We exploit data uncertainty that leads to decision 
trees with remarkably higher accuracies. 
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